A low-variance deviational simulation Monte Carlo for the Boltzmann equation
نویسندگان
چکیده
We present an efficient particle method for solving the Boltzmann equation. The key ingredients of this work are the variance reduction ideas presented in Baker and Hadjiconstantinou [L.L. Baker, N.G. Hadjiconstantinou, Variance reduction for Monte Carlo solutions of the Boltzmann Equation, Physics of Fluids, 17 (2005) (art. no, 051703)] and a new collision integral formulation which allows the method to retain the algorithmic structure of direct simulation Monte Carlo (DSMC) and thus enjoy the numerous advantages associated with particle methods, such as a physically intuitive formulation, computational efficiency due to importance sampling, low memory usage (no discretization in velocity space), and the ability to naturally and accurately capture discontinuities in the distribution function. The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage for low-signal flows (e.g. low flow speed) compared to traditional particle methods such as DSMC. In particular, the resulting method can capture arbitrarily small deviations from equilibrium at a computational cost that is independent of the magnitude of this deviation. The method is validated by comparing its predictions with DSMC solutions for spatially homogeneous and inhomogeneous problems. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Low-variance deviational simulation Monte Carlo
We present and discuss a particle simulation method for solving the Boltzmann equation which incorporates the variance reduction ideas presented in L. L. Baker and N. G. Hadjiconstantinou Physics of Fluids 17, 051703 2005 . The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage for low speed flows compared ...
متن کاملDeviational particle Monte Carlo for the Boltzmann equation
The paper describes the deviational particle Monte Carlo method for the Boltzmann equation. The approach is an application of the general “control variates” variance reduction technique to the problem of solving a nonlinear equation. The deviation of the solution from a reference Maxwellian is approximated by a system of positive and negative particles. Previous results from the literature are ...
متن کاملLow-noise Monte Carlo simulation of the variable hard sphere gas
We present an efficient particle simulation method for the Boltzmann transport equation based on the low-variance deviational simulation Monte Carlo approach to the variable-hard-sphere gas. The proposed method exhibits drastically reduced statistical uncertainty for low-signal problems compared to standard particle methods such as the direct simulation Monte Carlo method. We show that by enfor...
متن کاملDeviational simulation of phonon transport in graphene ribbons with ab initio scattering
Articles you may be interested in Size and boundary scattering controlled contribution of spectral phonons to the thermal conductivity in graphene ribbons Contribution of d-band electrons to ballistic transport and scattering during electron-phonon nonequilibrium in nanoscale Au films using an ab initio density of states We present a deviational Monte Carlo method for solving the Boltzmann-Peie...
متن کاملLow Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model
We present and validate a variance reduced deviational particle method for simulating the Boltzmann transport equation for the variable hard sphere (VHS) collision operator. In comparison with the direct simulation Monte Carlo (DSMC) method, the proposed method is more suitable for simulating transport in regimes where the departure from equilibrium is small, such as dilute gas flows in small-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 226 شماره
صفحات -
تاریخ انتشار 2007